#include "sha512.h"
...
void __fastcall TfrmMain::btnWorkClick(TObject *Sender)
{
char cDigest[SHA512_DIGEST_SIZE];
memset(cDigest, 0, sizeof(cDigest));
Sha512 sh;
sh.Update((BYTE*)ledStringInput->Text.c_str(), strlen(ledStringInput->Text.c_str()));
sh.Final(cDigest);
ledSHA512Digest->Text = cDigest;
}
/*
* FIPS 180-2 SHA-224/256/384/512 implementation
* Last update: 02/02/2007
* Issue date: 04/30/2005
*
* Copyright (C) 2005, 2007 Olivier Gay <olivier.gay@a3.epfl.ch>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef SHA2_H
#define SHA2_H
#define SHA224_DIGEST_SIZE ( 224 / 8 )
#define SHA256_DIGEST_SIZE ( 256 / 8 )
#define SHA384_DIGEST_SIZE ( 384 / 8 )
#define SHA512_DIGEST_SIZE ( 512 / 8 )
#define SHA256_BLOCK_SIZE ( 512 / 8 )
#define SHA512_BLOCK_SIZE (1024 / 8 )
#define SHA384_BLOCK_SIZE SHA512_BLOCK_SIZE
#define SHA224_BLOCK_SIZE SHA256_BLOCK_SIZE
#ifndef SHA2_TYPES
#define SHA2_TYPES
typedef unsigned char uint8;
typedef unsigned int uint32;
typedef unsigned long long uint64;
typedef unsigned char BYTE;
#endif
class Sha256
{
public:
Sha256();
void Update(const BYTE* pData, unsigned int len);
void Final(BYTE* pDigest);
private:
void Transfer(const BYTE* pData, unsigned int block_nb);
private:
unsigned int tot_len;
unsigned int len;
unsigned char block[2 * SHA256_BLOCK_SIZE];
unsigned int h[8];
};
class Sha224
{
public:
Sha224();
void Update(const BYTE* pData, unsigned int len);
void Final(BYTE* pDigest);
private:
void Transfer(const BYTE* pData, unsigned int block_nb);
private:
unsigned int tot_len;
unsigned int len;
unsigned char block[2 * SHA224_BLOCK_SIZE];
unsigned int h[8];
};
class Sha512
{
public:
Sha512();
void Update(const BYTE* pData, unsigned int len);
void Final(BYTE* pDigest);
private:
void Transfer(const BYTE* pData, unsigned int block_nb);
private:
unsigned int tot_len;
unsigned int len;
unsigned char block[2 * SHA512_BLOCK_SIZE];
unsigned long long h[8];
};
class Sha384
{
public:
Sha384();
void Update(const BYTE* pData, unsigned int len);
void Final(BYTE* pDigest);
private:
void Transfer(const BYTE* pData, unsigned int block_nb);
private:
unsigned int tot_len;
unsigned int len;
unsigned char block[2 * SHA384_BLOCK_SIZE];
unsigned long long h[8];
};
#endif /* !SHA2_H */
/*
* FIPS 180-2 SHA-224/256/384/512 implementation
* Last update: 02/02/2007
* Issue date: 04/30/2005
*
* Copyright (C) 2005, 2007 Olivier Gay <olivier.gay@a3.epfl.ch>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <string.h>
#include "Sha512.h"
#define SHFR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << ((sizeof(x) << 3) - n)))
#define ROTL(x, n) ((x << n) | (x >> ((sizeof(x) << 3) - n)))
#define CH(x, y, z) ((x & y) ^ (~x & z))
#define MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define SHA256_F1(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define SHA256_F2(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define SHA256_F3(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHFR(x, 3))
#define SHA256_F4(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHFR(x, 10))
#define SHA512_F1(x) (ROTR(x, 28) ^ ROTR(x, 34) ^ ROTR(x, 39))
#define SHA512_F2(x) (ROTR(x, 14) ^ ROTR(x, 18) ^ ROTR(x, 41))
#define SHA512_F3(x) (ROTR(x, 1) ^ ROTR(x, 8 ) ^ SHFR(x, 7))
#define SHA512_F4(x) (ROTR(x, 19) ^ ROTR(x, 61) ^ SHFR(x, 6))
#define UNPACK32(x, str)
{
*((str) + 3) = (uint8) ((x) );
*((str) + 2) = (uint8) ((x) >> 8);
*((str) + 1) = (uint8) ((x) >> 16);
*((str) + 0) = (uint8) ((x) >> 24);
}
#define PACK32(str, x)
{
*(x) = ((uint32) *((str) + 3) )
| ((uint32) *((str) + 2) << 8)
| ((uint32) *((str) + 1) << 16)
| ((uint32) *((str) + 0) << 24);
}
#define UNPACK64(x, str)
{
*((str) + 7) = (uint8) ((x) );
*((str) + 6) = (uint8) ((x) >> 8);
*((str) + 5) = (uint8) ((x) >> 16);
*((str) + 4) = (uint8) ((x) >> 24);
*((str) + 3) = (uint8) ((x) >> 32);
*((str) + 2) = (uint8) ((x) >> 40);
*((str) + 1) = (uint8) ((x) >> 48);
*((str) + 0) = (uint8) ((x) >> 56);
}
#define PACK64(str, x)
{
*(x) = ((uint64) *((str) + 7) )
| ((uint64) *((str) + 6) << 8)
| ((uint64) *((str) + 5) << 16)
| ((uint64) *((str) + 4) << 24)
| ((uint64) *((str) + 3) << 32)
| ((uint64) *((str) + 2) << 40)
| ((uint64) *((str) + 1) << 48)
| ((uint64) *((str) + 0) << 56);
}
/* Macros used for loops unrolling */
#define SHA256_SCR(i)
{
w[i] = SHA256_F4(w[i - 2]) + w[i - 7]
+ SHA256_F3(w[i - 15]) + w[i - 16];
}
#define SHA512_SCR(i)
{
w[i] = SHA512_F4(w[i - 2]) + w[i - 7]
+ SHA512_F3(w[i - 15]) + w[i - 16];
}
#define SHA256_EXP(a, b, c, d, e, f, g, h, j)
{
t1 = wv[h] + SHA256_F2(wv[e]) + CH(wv[e], wv[f], wv[g])
+ sha256_k[j] + w[j];
t2 = SHA256_F1(wv[a]) + MAJ(wv[a], wv[b], wv[c]);
wv[d] += t1;
wv[h] = t1 + t2;
}
#define SHA512_EXP(a, b, c, d, e, f, g ,h, j)
{
t1 = wv[h] + SHA512_F2(wv[e]) + CH(wv[e], wv[f], wv[g])
+ sha512_k[j] + w[j];
t2 = SHA512_F1(wv[a]) + MAJ(wv[a], wv[b], wv[c]);
wv[d] += t1;
wv[h] = t1 + t2;
}
uint32 sha224_h0[8] =
{0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4};
uint32 sha256_h0[8] =
{0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
uint64 sha384_h0[8] =
{0xcbbb9d5dc1059ed8ULL, 0x629a292a367cd507ULL,
0x9159015a3070dd17ULL, 0x152fecd8f70e5939ULL,
0x67332667ffc00b31ULL, 0x8eb44a8768581511ULL,
0xdb0c2e0d64f98fa7ULL, 0x47b5481dbefa4fa4ULL};
uint64 sha512_h0[8] =
{0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL};
uint32 sha256_k[64] =
{0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2};
uint64 sha512_k[80] =
{0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL};
/* SHA-256 functions */
void Sha256::Transfer(const BYTE* pData,
unsigned int block_nb)
{
uint32 w[64];
uint32 wv[8];
uint32 t1, t2;
const BYTE* sub_block;
for (int i = 0; i < (int) block_nb; i++) {
sub_block = pData + (i << 6);
for (int j = 0; j < 16; j++) {
PACK32(&sub_block[j << 2], &w[j]);
}
for (int j = 16; j < 64; j++) {
SHA256_SCR(j);
}
for (int j = 0; j < 8; j++) {
wv[j] = h[j];
}
for (int j = 0; j < 64; j++) {
t1 = wv[7] + SHA256_F2(wv[4]) + CH(wv[4], wv[5], wv[6])
+ sha256_k[j] + w[j];
t2 = SHA256_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]);
wv[7] = wv[6];
wv[6] = wv[5];
wv[5] = wv[4];
wv[4] = wv[3] + t1;
wv[3] = wv[2];
wv[2] = wv[1];
wv[1] = wv[0];
wv[0] = t1 + t2;
}
for (int j = 0; j < 8; j++) {
h[j] += wv[j];
}
}
}
Sha256::Sha256()
{
for (int i = 0; i < 8; i++) {
h[i] = sha256_h0[i];
}
len = 0;
tot_len = 0;
}
void Sha256::Update(const BYTE* pData,
unsigned int len)
{
unsigned int block_nb;
unsigned int new_len, rem_len, tmp_len;
const BYTE* shifted_data;
tmp_len = SHA256_BLOCK_SIZE - len;
rem_len = len < tmp_len ? len : tmp_len;
memcpy(&block[len], pData, rem_len);
if (len + len < SHA256_BLOCK_SIZE) {
len += len;
return;
}
new_len = len - rem_len;
block_nb = new_len / SHA256_BLOCK_SIZE;
shifted_data = pData + rem_len;
Transfer(block, 1);
Transfer(shifted_data, block_nb);
rem_len = new_len % SHA256_BLOCK_SIZE;
memcpy(block, &shifted_data[block_nb << 6],
rem_len);
len = rem_len;
tot_len += (block_nb + 1) << 6;
}
void Sha256::Final(BYTE* pDigest)
{
unsigned int block_nb;
unsigned int pm_len;
unsigned int len_b;
block_nb = (1 + ((SHA256_BLOCK_SIZE - 9)
< (len % SHA256_BLOCK_SIZE)));
len_b = (tot_len + len) << 3;
pm_len = block_nb << 6;
memset(block + len, 0, pm_len - len);
block[len] = 0x80;
UNPACK32(len_b, block + pm_len - 4);
Transfer(block, block_nb);
for (int i = 0 ; i < 8; i++) {
UNPACK32(h[i], &pDigest[i << 2]);
}
}
/* SHA-512 functions */
void Sha512::Transfer(const BYTE* pData,
unsigned int block_nb)
{
uint64 w[80];
uint64 wv[8];
uint64 t1, t2;
const BYTE* sub_block;
for (int i = 0; i < (int) block_nb; i++) {
sub_block = pData + (i << 7);
for (int j = 0; j < 16; j++) {
PACK64(&sub_block[j << 3], &w[j]);
}
for (int j = 16; j < 80; j++) {
SHA512_SCR(j);
}
for (int j = 0; j < 8; j++) {
wv[j] = h[j];
}
for (int j = 0; j < 80; j++) {
t1 = wv[7] + SHA512_F2(wv[4]) + CH(wv[4], wv[5], wv[6])
+ sha512_k[j] + w[j];
t2 = SHA512_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]);
wv[7] = wv[6];
wv[6] = wv[5];
wv[5] = wv[4];
wv[4] = wv[3] + t1;
wv[3] = wv[2];
wv[2] = wv[1];
wv[1] = wv[0];
wv[0] = t1 + t2;
}
for (int j = 0; j < 8; j++) {
h[j] += wv[j];
}
}
}
Sha512::Sha512()
{
for (int i = 0; i < 8; i++) {
h[i] = sha512_h0[i];
}
len = 0;
tot_len = 0;
}
void Sha512::Update(const BYTE* pData,
unsigned int len)
{
unsigned int block_nb;
unsigned int new_len, rem_len, tmp_len;
const BYTE* shifted_data;
tmp_len = SHA512_BLOCK_SIZE - len;
rem_len = len < tmp_len ? len : tmp_len;
memcpy(&block[len], pData, rem_len);
if (len + len < SHA512_BLOCK_SIZE) {
len += len;
return;
}
new_len = len - rem_len;
block_nb = new_len / SHA512_BLOCK_SIZE;
shifted_data = pData + rem_len;
Transfer(block, 1);
Transfer(shifted_data, block_nb);
rem_len = new_len % SHA512_BLOCK_SIZE;
memcpy(block, &shifted_data[block_nb << 7],
rem_len);
len = rem_len;
tot_len += (block_nb + 1) << 7;
}
void Sha512::Final(BYTE* digest)
{
unsigned int block_nb;
unsigned int pm_len;
unsigned int len_b;
block_nb = 1 + ((SHA512_BLOCK_SIZE - 17)
< (len % SHA512_BLOCK_SIZE));
len_b = (tot_len + len) << 3;
pm_len = block_nb << 7;
memset(block + len, 0, pm_len - len);
block[len] = 0x80;
UNPACK32(len_b, block + pm_len - 4);
Transfer(block, block_nb);
for (int i = 0 ; i < 8; i++) {
UNPACK64(h[i], &digest[i << 3]);
}
}
/* SHA-384 functions */
Sha384::Sha384()
{
for (int i = 0; i < 8; i++) {
h[i] = sha384_h0[i];
}
len = 0;
tot_len = 0;
}
void Sha384::Update(const BYTE* pData,
unsigned int len)
{
unsigned int block_nb;
unsigned int new_len, rem_len, tmp_len;
const BYTE* shifted_data;
tmp_len = SHA384_BLOCK_SIZE - len;
rem_len = len < tmp_len ? len : tmp_len;
memcpy(&block[len], pData, rem_len);
if (len + len < SHA384_BLOCK_SIZE) {
len += len;
return;
}
new_len = len - rem_len;
block_nb = new_len / SHA384_BLOCK_SIZE;
shifted_data = pData + rem_len;
Transfer(block, 1);
Transfer(shifted_data, block_nb);
rem_len = new_len % SHA384_BLOCK_SIZE;
memcpy(block, &shifted_data[block_nb << 7],
rem_len);
len = rem_len;
tot_len += (block_nb + 1) << 7;
}
void Sha384::Final(BYTE* digest)
{
unsigned int block_nb;
unsigned int pm_len;
unsigned int len_b;
block_nb = (1 + ((SHA384_BLOCK_SIZE - 17)
< (len % SHA384_BLOCK_SIZE)));
len_b = (tot_len + len) << 3;
pm_len = block_nb << 7;
memset(block + len, 0, pm_len - len);
block[len] = 0x80;
UNPACK32(len_b, block + pm_len - 4);
Transfer(block, block_nb);
for (int i = 0 ; i < 6; i++) {
UNPACK64(h[i], &digest[i << 3]);
}
}
void Sha384::Transfer(const BYTE* pData,
unsigned int block_nb)
{
uint64 w[80];
uint64 wv[8];
uint64 t1, t2;
const BYTE* sub_block;
for (int i = 0; i < (int) block_nb; i++) {
sub_block = pData + (i << 7);
for (int j = 0; j < 16; j++) {
PACK64(&sub_block[j << 3], &w[j]);
}
for (int j = 16; j < 80; j++) {
SHA512_SCR(j);
}
for (int j = 0; j < 8; j++) {
wv[j] = h[j];
}
for (int j = 0; j < 80; j++) {
t1 = wv[7] + SHA512_F2(wv[4]) + CH(wv[4], wv[5], wv[6])
+ sha512_k[j] + w[j];
t2 = SHA512_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]);
wv[7] = wv[6];
wv[6] = wv[5];
wv[5] = wv[4];
wv[4] = wv[3] + t1;
wv[3] = wv[2];
wv[2] = wv[1];
wv[1] = wv[0];
wv[0] = t1 + t2;
}
for (int j = 0; j < 8; j++) {
h[j] += wv[j];
}
}
}
/* SHA-224 functions */
Sha224::Sha224()
{
for (int i = 0; i < 8; i++) {
h[i] = sha224_h0[i];
}
len = 0;
tot_len = 0;
}
void Sha224::Update(const BYTE* pData,
unsigned int len)
{
unsigned int block_nb;
unsigned int new_len, rem_len, tmp_len;
const BYTE* shifted_data;
tmp_len = SHA224_BLOCK_SIZE - len;
rem_len = len < tmp_len ? len : tmp_len;
memcpy(&block[len], pData, rem_len);
if (len + len < SHA224_BLOCK_SIZE) {
len += len;
return;
}
new_len = len - rem_len;
block_nb = new_len / SHA224_BLOCK_SIZE;
shifted_data = pData + rem_len;
Transfer(block, 1);
Transfer(shifted_data, block_nb);
rem_len = new_len % SHA224_BLOCK_SIZE;
memcpy(block, &shifted_data[block_nb << 6],
rem_len);
len = rem_len;
tot_len += (block_nb + 1) << 6;
}
void Sha224::Final(BYTE* digest)
{
unsigned int block_nb;
unsigned int pm_len;
unsigned int len_b;
block_nb = (1 + ((SHA224_BLOCK_SIZE - 9)
< (len % SHA224_BLOCK_SIZE)));
len_b = (tot_len + len) << 3;
pm_len = block_nb << 6;
memset(block + len, 0, pm_len - len);
block[len] = 0x80;
UNPACK32(len_b, block + pm_len - 4);
Transfer(block, block_nb);
for (int i = 0 ; i < 7; i++) {
UNPACK32(h[i], &digest[i << 2]);
}
}
void Sha224::Transfer(const BYTE* pData,
unsigned int block_nb)
{
uint32 w[64];
uint32 wv[8];
uint32 t1, t2;
const BYTE* sub_block;
for (int i = 0; i < (int) block_nb; i++) {
sub_block = pData + (i << 6);
for (int j = 0; j < 16; j++) {
PACK32(&sub_block[j << 2], &w[j]);
}
for (int j = 16; j < 64; j++) {
SHA256_SCR(j);
}
for (int j = 0; j < 8; j++) {
wv[j] = h[j];
}
for (int j = 0; j < 64; j++) {
t1 = wv[7] + SHA256_F2(wv[4]) + CH(wv[4], wv[5], wv[6])
+ sha256_k[j] + w[j];
t2 = SHA256_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]);
wv[7] = wv[6];
wv[6] = wv[5];
wv[5] = wv[4];
wv[4] = wv[3] + t1;
wv[3] = wv[2];
wv[2] = wv[1];
wv[1] = wv[0];
wv[0] = t1 + t2;
}
for (int j = 0; j < 8; j++) {
h[j] += wv[j];
}
}
}